TRIBE Uncovers the Role of Dis3 in Shaping the Dynamic Transcriptome in Malaria Parasites

摘要

Identification of RNA targets of RNA-binding proteins (RBPs) is essential for complete understanding of their biological functions. However, it is still a challenge to identify the biologically relevant targets of RBPs through in vitro strategies of RIP-seq, HITS-CLIP, or GoldCLIP due to the potentially high background and complicated manipulation. In malaria parasites, RIP-seq and gene disruption are the few tools available currently for identification of RBP targets. Here, we have adopted the TRIBE (Targets of RNA binding proteins identified by editing) system to in vivo identify the RNA targets of PfDis3, a key exoribonuclease subunit of RNA exosome in Plasmodium falciparum. We generated a transgenic parasite line of PfDis3-ADARcd, which catalyzes an adenosine (A)-to-inosine (I) conversion at the potential interacting sites of PfDis3-targeting RNAs. Most of PfDis3 target genes contain one edit site. The majority of the edit sites detected by PfDis3-TRIBE locate in exons and spread across the entire coding regions. The nucleotides adjacent to the edit sites contain similar to 75% of A C T. PfDis3-TRIBE target genes are biases toward higher RIP enrichment, suggesting that PfDis3-TRIBE preferentially detects stronger PfDis3 RIP targets. Collectively, PfDis3-TRIBE is a favorable tool to identify in vivo target genes of RBP with high efficiency and reproducibility. Additionally, the PfDis3-targeting genes are involved in stage-related biological processes during the blood-stage development. Thus PfDis3 appears to shape the dynamic transcriptional transcriptome of malaria parasites through post-transcriptional degradation of a variety of unwanted transcripts from both strands in the asexual blood stage.

出版物
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY
刘孟
刘孟
2017级直博生, 2022年06月毕业,现为美国National Cancer Institute,NIH,Bethesda, MD博士后
沈仕君
沈仕君
2016级直博生,2022年7月毕业,2022年8月入站博士后
江赐忠
江赐忠
博士生导师;PI
下一页
上一页

相关