Publication

H2A.Z Nucleosome Positioning Has No Impact on Genetic Variation in Drosophila Genome

Nucleosome occupancy results in complex sequence variation rate heterogeneity by either increasing mutation rate or inhibiting DNA repair in yeast, fish, and human. H2A.Z nucleosome is extensively involved in gene transcription activation and regulation. To test whether H2A.Z nucleosome has the similar impact on sequence variability in the Drosophila genome, we profiled the H2A.Z nucleosome occupancy and sequence variation rate at gene ends and splicing sites. Consistent with previous studies, H2A.Z nucleosome positioning helps to demarcate the borders of exons. Nucleosome occupancy is anticorrelated with sequence divergence rate in the regions flanking transcription start sites and splicing sites. However, there is no rate heterogeneity between the linker DNA and H2A.Z nucleosomal DNA regardless of nucleosome occupancy, fuzziness, positioning in promoter, coding, and intergenic regions, young or old genes. But the rate at intergenic nucleosomes and the flanking linker regions is higher than that at the genic counterparts. Further analyses found that the high sequence divergence rate in the promoter regions that are usually nucleosome depleted regions may be likely resulted from the high mutation rate in the enriched tandem repeats. Interestingly, within nucleosomes spanning splicing sites, sequence variability of nucleosomal DNA significantly increases from the end within exons to the other end protruding into introns. The relaxed functional constraint in introns contributes to the high rate of nucleosomal DNA residing in introns while the strict functional constraint in exons maintains the low rate of nucleosomal DNA residing in exons. Taken together, H2A.Z nucleosome occupancy has no effect on sequence variability of Drosophila genome, which is likely determined by local sequence composition and the concomitant selection pressure.

microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming

Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM), but the mechanisms underlying this reprogramming remain poorly understood. Here, we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during iPSC generation and that miR-29b expression is required for OSKM- and OSK-mediated reprogramming. Mechanistic studies show that Dnmt3a and Dnmt3b are in vivo targets of miR-29b and that Dnmt3a and Dnmt3b expression is inversely correlated with miR-29b expression during reprogramming. Moreover, the effect of miR-29b on reprogramming can be blocked by Dnmt3a or Dnmt3b overexpression. Further experiments indicate that miR-29b-DNMT signaling is significantly involved in the regulation of DNA methylation-related reprogramming events, such as mesenchymal-to-epithelial transition (MET) and Dlk1-Dio3 region transcription. Thus, our studies not only reveal that miR-29b is a novel mediator of reprogramming factor Sox2 but also provide evidence for a multistep mechanism in which Sox2 drives a miR-29b-DNMT signaling axis that regulates DNA methylation-related events during reprogramming.

PEpiD: A Prostate Epigenetic Database in Mammals

Epigenetic mechanisms play key roles in initiation and progression of prostate cancer by changing gene expression. The Prostate Epigenetic Database (PEpiD: http://wukong.tongji.edu.cn/pepid) archives the three extensively characterized epigenetic mechanisms DNA methylation, histone modification, and microRNA implicated in prostate cancer of human, mouse, and rat. PEpiD uses a distinct color scheme to present the three types of epigenetic data and provides a user-friendly interface for flexible query. The retrieved information includes Refseq ID, gene symbol, gene alias, genomic loci of epigenetic changes, tissue source, experimental method, and supportive references. The change of histone modification (hyper or hypo) and the corresponding gene expression change (up or down) are also indicated. A graphic view of DNA methylation with exon-intron structure and predicted CpG islands is provided as well. Moreover, the prostate-related ENCODE tracks (DNA methylation, histone modifications, chromatin remodelers), and other key transcription factors with reported roles in prostate are displayed in the browser as well. The reversibility of epigenetic aberrations has made them potential markers for diagnosis and prognosis, and targets for treatment of cancers. This curated information will improve our understanding of epigenetic mechanisms of gene regulation in prostate cancer, and serve as an important resource for epigenetic research in prostate cancer.

Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis

Background: Neural crest defects lead to congenital heart disease involving outflow tract malformation. Integrin-linked-kinase (ILK) plays important roles in multiple cellular processes and embryogenesis. ILK is expressed in the neural crest, but its role in neural crest and outflow tract morphogenesis remains unknown. Results: We ablated ILK specifically in the neural crest using the Wnt1-Cre transgene. ILK ablation resulted in abnormal migration and overpopulation of neural crest cells in the pharyngeal arches and outflow tract and a significant reduction in the expression of neural cell adhesion molecule (NCAM) and extracellular matrix components. ILK mutant embryos exhibited an enlarged common arterial trunk and ventricular septal defect. Reduced smooth muscle differentiation, but increased ossification and neurogenesis/innervation were observed in ILK mutant outflow tract that may partly be due to reduced transforming growth factor beta 2 (TGF beta 2) but increased bone morphogenetic protein (BMP) signaling. Consistent with these observations, microarray analysis of fluorescence-activated cell sorting (FACS)-sorted neural crest cells revealed reduced expression of genes associated with muscle differentiation, but increased expression of genes of neurogenesis and osteogenesis. Conclusions: Our results demonstrate that ILK plays essential roles in neural crest and outflow tract development by mediating complex crosstalk between cell matrix and multiple signaling pathways. Changes in these pathways may collectively result in the unique neural crest and outflow tract phenotypes observed in ILK mutants.

Ribosomal RNA Gene Transcription Mediated by the Master Genome Regulator Protein CCCTC-binding Factor (CTCF) Is Negatively Regulated by the Condensin Complex

CCCTC-binding factor (CTCF) is a ubiquitously expressed "master weaver" and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation, and high-order chromatin organization. It has been shown that CTCF facilitates the recruitment of the upstream binding factor onto ribosomal DNA (rDNA) and regulates the local epigenetic state of rDNA repeats. However, the mechanism by which CTCF modulates rRNA gene transcription has not been well understood. Here we found that wild-type CTCF augments the pre-rRNA level, cell size, and cell growth in cervical cancer cells. In contrast, RNA interference-mediated knockdown of CTCF reduced pre-rRNA transcription. CTCF positively regulates rRNA gene transcription in a RNA polymerase I-dependent manner. We identified an RRGR motif as a putative nucleolar localization sequence in the C-terminal region of CTCF that is required for activating rRNA gene transcription. Using mass spectrometry, we identified SMC2 and SMC4, two subunits of condensin complexes that interact with CTCF. Condensin negatively regulates CTCF-mediated rRNA gene transcription. Knockdown of SMC2 expression significantly facilitates the loading of CTCF and the upstream binding factor onto the rDNA locus and increases histone acetylation across the rDNA locus. Taken together, our study suggests that condensin competes with CTCF in binding to a specific rDNA locus and negatively regulates CTCF-mediated rRNA gene transcription.

TFPP: An SVM-Based Tool for Recognizing Flagellar Proteins in Trypanosoma brucei

Trypanosoma brucei is a unicellular flagellated eukaryotic parasite that causes African trypanosomiasis in human and domestic animals with devastating health and economic consequences. Recent studies have revealed the important roles of the single flagellum of T. brucei in many aspects, especially that the flagellar motility is required for the viability of the bloodstream form T. brucei, suggesting that impairment of the flagellar function may provide a promising cure for African sleeping sickness. Knowing the flagellum proteome is crucial to study the molecular mechanism of the flagellar functions. Here we present a novel computational method for identifying flagellar proteins in T. brucei, called trypanosome flagellar protein predictor (TFPP). TFPP was developed based on a list of selected discriminating features derived from protein sequences, and could predict flagellar proteins with similar to 92% specificity at a similar to 84% sensitivity rate. Applied to the whole T. brucei proteome, TFPP reveals 811 more flagellar proteins with high confidence, suggesting that the flagellar proteome covers similar to 10% of the whole proteome. Comparison of the expression profiles of the whole T. brucei proteome at three typical life cycle stages found that similar to 45% of the flagellar proteins were significantly changed in expression levels between the three life cycle stages, indicating life cycle stage-specific regulation of flagellar functions in T. brucei. Overall, our study demonstrated that TFPP is highly effective in identifying flagellar proteins and could provide opportunities to study the trypanosome flagellar proteome systematically. Furthermore, the web server for TFPP can be freely accessed at http:/wukong.tongji.edu.cn/tfpp.

VEGF-Mediated Proliferation of Human Adipose Tissue-Derived Stem Cells

Human adipose tissue-derived stem cells (ADSCs) are an attractive multipotent stem cell source with therapeutic applicability across diverse fields for the repair and regeneration of acute and chronically damaged tissues. In recent years, there has been increasing interest in ADSC for tissue engineering applications. However, the mechanisms underlying the regulation of ADSC proliferation are not fully understood. Here we show that 47 transcripts are up-regulated while 23 are down-regulated in ADSC compared to terminally differentiated cells based on global mRNA profiling and microRNA profiling. Among the up-regulated genes, the expression of vascular endothelial growth factor (VEGF) is fine-tuned by miR-199a-5p. Further investigation indicates that VEGF accelerates ADSC proliferation whereas the multipotency of ADSC remains stable in terms of adipogenic, chondrogenic and osteogenic potentials after VEGF treatment, suggesting that VEGF may serve as an excellent supplement for accelerating ADSC proliferation during in vitro expansion.

MicroRNA-449 and MicroRNA-34b/c Function Redundantly in Murine Testes by Targeting E2F Transcription Factor-Retinoblastoma Protein (E2F-pRb) Pathway

MicroRNAs (miRNAs) mainly function as post-transcriptional regulators and are involved in a wide range of physiological and pathophysiological processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. Mouse testes express a large number of miRNAs. However, the physiological roles of these testicular miRNAs remain largely unknown. Using microarray and quantitative real time PCR assays, we identified that miRNAs of the microRNA-449 (miR-449) cluster were preferentially expressed in the mouse testis, and their levels were drastically up-regulated upon meiotic initiation during testicular development and in adult spermatogenesis. The expression pattern of the miR-449 cluster resembled that of microRNA-34b/c (miR-34b/c) during spermatogenesis. Further analyses identified that cAMP-responsive element modulator tau and SOX5, two transcription factors essential for regulating male germ cell gene expression, acted as the upstream transactivators to stimulate the expression of the miR-449 cluster in mouse testes. Despite its abundant expression in testicular germ cells, miR-449-null male mice developed normally and exhibited normal spermatogenesis and fertility. Our data further demonstrated that miR-449 shared a cohort of target genes that belong to the E2F transcription factor-retinoblastoma protein pathway with the miR-34 family, and levels of miR-34b/c were significantly up-regulated in miR-449-null testes. Taken together, our data suggest that the miR-449 cluster and miR-34b/c function redundantly in the regulation of male germ cell development in murine testes.

Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium

Dictyostelium discoideum is an amoebozoa that exists in both a free-living unicellular and a multicellular form. It is situated in a deep branch in the evolutionary tree and is particularly noteworthy in having a very A/T-rich genome. Dictyostelium provides an ideal system to examine the extreme to which nucleotide bias may be employed in organizing promoters, genes, and nucleosomes across a genome. We find that Dictyostelium genes are demarcated precisely at their 5' ends by poly-T tracts and precisely at their 3' ends by poly-A tracts. These tracts are also associated with nucleosome-free regions and are embedded with precisely positioned TATA boxes. Homo- and heteropolymeric tracts of A and T demarcate nucleosome border regions. Together, these findings reveal the presence of a variety of functionally distinct polymeric A/T elements. Strikingly, Dictyostelium chromatin may be organized in di-nucleosome units but is otherwise organized as in animals. This includes a +1 nucleosome in a position that predicts the presence of a paused RNA polymerase II. Indeed, we find a strong phylogenetic relationship between the presence of the NELF pausing factor and positioning of the +1 nucleosome. Pausing and +1 nucleosome positioning may have coevolved in animals.

A Comprehensive Genomic Binding Map of Gene and Chromatin Regulatory Proteins in Saccharomyces

Hundreds of different proteins regulate and implement transcription in Saccharomyces. Yet their interrelationships have not been investigated on a comprehensive scale. Here we determined the genome-wide binding locations of 200 transcription-related proteins, under normal and acute heat-shock conditions. This study distinguishes binding between distal versus proximal promoter regions as well as the 3' ends of genes for nearly all mRNA and tRNA genes. This study reveals (1) a greater diversity and specialization of regulation associated with the SAGA transcription pathway compared to the TFIID pathway, (2) new regulators enriched at tRNA genes, (3) a global co-occupancy network of 20,000 unique regulator combinations that show a high degree of regulatory interconnections among lowly expressed genes, (4) regulators of the SAGA pathway located largely distal to the core promoter and regulators of the TFIID pathway located proximally, and (5) distinct mobilization of SAGA- versus TFIID-linked regulators during acute heat shock.